Skip to main content

Saving prefabs.

One valid 2 level prefab ready to be added to the collection.
The prefab builder is done. Had a run in with shallow copy problems at one point. It's something I knew about from a previous project, but completely forgot about this time around. I'll have to check the code for the main game to make sure I've not let the same problem creep in there. Sometimes I forget things just as fast as I learn them!

Right now you can save prefabs (as long as they are valid) in to a local dictionary, and then browse through them to edit or just check them out. Once you're happy with what you've got you can save them to an external file. I haven't written any code for loading prefabs from the external store yet, but I guess I had better. If I somehow save a prefab which has an error (the key for a locked door is one the wrong side of the door for example) I'll need to be able to find and delete it from the main store of prefabs. It would probably also be a good idea to include some way of getting prefab names from in game when play testing so people can report broken prefabs and I can check if it's really broken or whether they just couldn't find the secret door.

Comments

Popular posts from this blog

Upstairs / Downstairs.

I've decided to make my prefabs multilevel. Later this should allow me to add pit traps and other great stuff. It also makes it easier to line up stairs so that you can exit them on the same co-ordinates where you entered them. The prefab editor is pretty much finished, it just needs some code for loading up prefabs from a saved dictionary, so that they can be checked or edited. The entries will need to be forwards compatible, so I'll be loading each tile and then translating the indexes to a new array, that way if I add extra indexes or extra info (like traps or puzzles) I'll be able to update existing prefabs to work with the new standard. Click for a video.

Automating Level imports from Blender to Godot

  Recently I've been making some levels in Blender an importing them into Godot. There are only about 7 or 8 shaders for each level, not counting dynamic objects which will be added later. But to improve rendering performance, it can be a good idea to split the meshes up into sections. At that point you might be faced with a list like this: Or it might be even more chaotic, if you didn't use simple names for the objects in your level. So it can take a long time to sort out all the meshes, make them unique and add textures and so on. Blender imports with simple Blender textures, or with placeholder materials. This is sometimes OK, but if your Godot shaders are very different to those used by Blender, it means applying new materials to every mesh object in the level when you import the scene. I found that during the design process, I was importing and readying a level several times before I was happy with the final layout. So at first I was wasting a lot of time. In Blender, I us...

The basics of A Star Pathfinding

Someone wanted to know how the code works for basic A* path-finding. Rather than reply in Facebook, I've made a quick post for it here. 1. create an array of nodes to represent your level.  It can be nodes with connections, or it can be a list of co-ordinates where connections are assumed to be NESW where a node exists.   Example 1:   level = {"001":[["002", 5.0], ["003", 5.0]], "002":[["001", 5.0], ["003", 5.0]], "003":[["002", 5.0], ["001", 5.0]]}    This is a dictionary based "mesh" type array, for easy reading. You can see it has 3 nodes arranged in a triangle. Each node is connected to two others, and in this case, the distance between each is 5.0 units.    It's easy to see how this mesh could be expanded. You just need more points. Each point must include its two neighbors and the distance between them.   Example 2:   level = [[0,1,1,0], [0,0,1,1], [1,1,1,0], [1,0,0,0...